How to measure the incremental Return On Ad Spend (iROAS) is a fundamental problem for the online advertising industry. A standard modern tool is to run randomized geo experiments, where experimental units are non-overlapping ad-targetable geographical areas (Vaver & Koehler 2011). However, how to design a reliable and cost-effective geo experiment can be complicated, for example: 1) the number of geos is often small, 2) the response metric (e.g. revenue) across geos can be very heavy-tailed due to geo heterogeneity, and furthermore 3) the response metric can vary dramatically over time. To address these issues, we propose a robust nonparametric method for the design, called Trimmed Match Design (TMD), which extends the idea of Trimmed Match (Chen & Au 2019) and furthermore integrates the techniques of optimal subset pairing and sample splitting in a novel and systematic manner. Some simulation and real case studies are presented. We also point out a few open problems for future research.


翻译:如何测量递增的回报支出(iROAS)是在线广告业的一个根本问题。一个标准的现代工具是随机化的地质实验,实验单位是非重叠的可目标地理区域(Vaver & Koehler,2011年)。然而,如何设计可靠和具有成本效益的地质实验可能比较复杂,例如:1 地质数量往往很小,2 跨地球的反应度量(例如收入)可能因地理差异性而非常繁琐,3 反应度量指标可能随时间而变化。为了解决这些问题,我们为设计提出了一个强有力的非参数性方法,称为Trimmmed Match Dign(TMD),该方法扩展了Trimmmed Match(Chen & Au 2019)的概念,并进一步以新颖和系统的方式整合了最佳子配对和样本分离的技术。介绍了一些模拟和真实案例研究。我们还指出了未来研究的少数公开问题。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Metric-Distortion Bounds under Limited Information
Arxiv
0+阅读 · 2021年7月6日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年4月29日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员