How to measure the incremental Return On Ad Spend (iROAS) is a fundamental problem for the online advertising industry. A standard modern tool is to run randomized geo experiments, where experimental units are non-overlapping ad-targetable geographical areas (Vaver & Koehler 2011). However, how to design a reliable and cost-effective geo experiment can be complicated, for example: 1) the number of geos is often small, 2) the response metric (e.g. revenue) across geos can be very heavy-tailed due to geo heterogeneity, and furthermore 3) the response metric can vary dramatically over time. To address these issues, we propose a robust nonparametric method for the design, called Trimmed Match Design (TMD), which extends the idea of Trimmed Match (Chen & Au 2019) and furthermore integrates the techniques of optimal subset pairing and sample splitting in a novel and systematic manner. Some simulation and real case studies are presented. We also point out a few open problems for future research.
翻译:如何测量递增的回报支出(iROAS)是在线广告业的一个根本问题。一个标准的现代工具是随机化的地质实验,实验单位是非重叠的可目标地理区域(Vaver & Koehler,2011年)。然而,如何设计可靠和具有成本效益的地质实验可能比较复杂,例如:1 地质数量往往很小,2 跨地球的反应度量(例如收入)可能因地理差异性而非常繁琐,3 反应度量指标可能随时间而变化。为了解决这些问题,我们为设计提出了一个强有力的非参数性方法,称为Trimmmed Match Dign(TMD),该方法扩展了Trimmmed Match(Chen & Au 2019)的概念,并进一步以新颖和系统的方式整合了最佳子配对和样本分离的技术。介绍了一些模拟和真实案例研究。我们还指出了未来研究的少数公开问题。