In this article, we consider identification, estimation, and inference procedures for treatment effect parameters using Difference-in-Differences (DiD) with (i) multiple time periods, (ii) variation in treatment timing, and (iii) when the "parallel trends assumption" holds potentially only after conditioning on observed covariates. We show that a family of causal effect parameters are identified in staggered DiD setups, even if differences in observed characteristics create non-parallel outcome dynamics between groups. Our identification results allow one to use outcome regression, inverse probability weighting, or doubly-robust estimands. We also propose different aggregation schemes that can be used to highlight treatment effect heterogeneity across different dimensions as well as to summarize the overall effect of participating in the treatment. We establish the asymptotic properties of the proposed estimators and prove the validity of a computationally convenient bootstrap procedure to conduct asymptotically valid simultaneous (instead of pointwise) inference. Finally, we illustrate the relevance of our proposed tools by analyzing the effect of the minimum wage on teen employment from 2001--2007. Open-source software is available for implementing the proposed methods.
翻译:在本条中,我们考虑使用差异差异(DID)的处理效果参数的识别、估计和推断程序,(一) 多个时段,(二) 治疗时间的变化,(三) “平行趋势假设”只有在对观察到的共变体进行调整之后才可能存在。我们表明,在交错的“DID”设置中,可以确定一系列因果关系参数,即使所观察到的特征的差异造成各群体之间非平行结果动态。我们的识别结果允许人们使用结果回归、反概率加权、或双向罗布斯估计值。我们还提出不同的汇总计划,可以用来突出不同层面的处理效果异质性,并概述参与治疗的总体效果。我们确定拟议的估算师的无症状特性,并证明计算上方便的靴式捕捉程序的有效性,以便进行具有一定效力的同步(而不是点推论)同时进行。最后,我们通过分析2001-2007年可采用的开放源码软件实施方法,来说明我们拟议工具的相关性。