Given a collection of probability distributions $p_{1},\ldots,p_{m}$, the minimum entropy coupling is the coupling $X_{1},\ldots,X_{m}$ ($X_{i}\sim p_{i}$) with the smallest entropy $H(X_{1},\ldots,X_{m})$. While this problem is known to be NP-hard, we present an efficient algorithm for computing a coupling with entropy within 2 bits from the optimal value. More precisely, we construct a coupling with entropy within 2 bits from the entropy of the greatest lower bound of $p_{1},\ldots,p_{m}$ with respect to majorization. This construction is also valid when the collection of distributions is infinite, and when the supports of the distributions are infinite. Potential applications of our results include random number generation, entropic causal inference, and functional representation of random variables.


翻译:根据概率分布 $p ⁇ 1},\ldots,p ⁇ m}$1},最小的酶联结是 $X ⁇ 1},\ldots,X ⁇ m}$(X ⁇ i ⁇ sim p ⁇ i}$) 与最小的酶联产(H) (X ⁇ 1},\ldots,X ⁇ m}$)。虽然这个问题已知是NP硬的,但我们提出了一个高效的算法,用于计算从最佳值中2位内与酶联产。更确切地说,我们从最大较低约束 $p ⁇ 1},\ldots,p ⁇ m}的酶联产中,2位内,与酶联产的联产。当分布的收集是无限,当分布的支撑是无限时,这种构造也是有效的。我们结果的潜在应用包括随机数字生成、诱因果和随机变量的功能表示。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月9日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员