Based on operations prescribed under the paradigm of Complex Transformation Optics (CTO) [1-5], it was recently shown in [5] that a complex source point (CSP) can be mimicked by a parity-time ($\mathcal{PT}$) transformation media. Such coordinate transformation has a mirror symmetry for the imaginary part, and results in a balanced loss/gain metamaterial slab. A CSP produces a Gaussian beam and, consequently, a point source placed at the center of such metamaterial slab produces a Gaussian beam propagating away from the slab. Here, we extend the CTO analysis to non-symmetric complex coordinate transformations as put forth in [6] and verify that, by using simply a (homogeneous) doubly anisotropic gain-media metamaterial slab, one can still mimic a CSP and produce Gaussian beam. In addition, we show that a Gaussian-like beams can be produced by point sources placed {\it outside} the slab as well [6]. By making use of the extra degrees of freedom (real and imaginary part of the coordinate transformation) provided by CTO, the near-zero requirement on the real part of the resulting constitutive parameters can be relaxed to facilitate potential realization of Gaussian-like beams. We illustrate how beam properties such as peak amplitude and waist location can be controlled by a proper choice of (complex-valued) CTO Jacobian elements. In particular, the beam waist location may be moved bidirectionally by allowing for negative entries in the Jacobian (equivalent to inducing negative refraction effects). These results are then interpreted in light of the ensuing CSP location.
翻译:根据复杂转化光学(CTO)[1-5] 范式规定的操作[1-5],最近[5] 显示,复杂的源点(CSP)可被对称时间($\mathcal{PT}}$)变异介质模拟。这种坐标变换对想象部分具有镜像的对称性,并导致平衡的损益/增元材料板。一个 CSP 生成一个高萨光束,从而将一个点源源放置在这种元材料板的中心,产生一个高斯比亚的直径向外滚动。在这里,我们将CTO选择地点的分析扩展至非对称复杂的复合协调变异介介质。如果使用(多色)双向反向的反色增增益介质的元材料板,一个人仍可以模拟CSP,并产生高斯比值。此外,我们展示高斯比值的比值可以由在外部放置的点源源(rick)生成。我们将正值变异的变现位置推移动的值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值,作为C的C- 的正位变现变变变变变变变变变变变变的值,通过正位的变变变现的C的正正正正正变变变变变的值, 的变变的值, 以正正正正的变变值的值的值值值值的值的值的值的值的值的值的值值值值值值值值值值值值值值值值值值值值,可以以正正位值為直到正位值為直到正正位值,以正位值的C的变值,以正位值的变值為直值為直值為為為為為直值,以正正正变值的C的C。的变值的变值的变值的值的变值的变值為為為直值的变值的C。的变值的变值,以正位值,以正位值的变值為為的变值為直值,以正位值為直值為直值為直值,以正數值的變值的變值的