In this paper, we propose and study a distributed and secure algorithm for computing dominant (or truncated) singular value decompositions (SVD) of large and distributed data matrices. We consider the scenario where each node privately holds a subset of columns and only exchanges "safe" information with other nodes in a collaborative effort to calculate a dominant SVD for the whole matrix. In the framework of alternating direction methods of multipliers (ADMM), we propose a novel formulation for building consensus by equalizing subspaces spanned by splitting variables instead of equalizing the variables themselves. This technique greatly relaxes feasibility restrictions and accelerates convergence significantly, while at the same time yielding simple subproblems. We design several algorithmic features, including a low-rank multiplier formula and mechanisms for controlling subproblem solution accuracies, to increase the algorithm's computational efficiency and reduce its communication overhead. More importantly, unlike most existing distributed or parallelized algorithms, our algorithm preserves the privacy of locally-held data; that is, none of the nodes can recover the data stored in another node through information exchanged during communications. We present convergence analysis results, including a worst-case complexity estimate, and extensive experimental results indicating that the proposed algorithm, while safely guarding data privacy, has a strong potential to deliver a cutting-edge performance, especially when communication costs are relatively high.


翻译:在本文中,我们提出并研究一个分布和安全的算法,用于计算大型和分布式数据矩阵的主要(或缺线的)单值分解。我们考虑了每个节点私人持有一组分栏和仅与其他节点交换“安全”信息,以协力计算整个矩阵的支配性SVD。在乘数的交替方向方法(ADMM)框架内,我们提出一个新的公式,通过将分布式或平行的算法等同起来,使分解变量的子空间相互平衡,而不是使变量本身等同,以建立共识。这一技术大大放松了可行性限制,加快了趋同速度,同时产生了简单的子问题。我们设计了几种算法特征,包括低层次的乘数公式和机制,用于控制子问题解决方案的精度,以提高算法的计算效率并减少其通信间接费用。更重要的是,与大多数现有的分布式或平行的算法不同,我们的算法维护了当地掌握数据的隐私。也就是说,没有一个节点能够通过另一个节点恢复储存的数据,同时产生简单的分解问题。我们设计了几种算法,我们提出了一种广泛的精确性分析,在比较复杂的实验性数据,我们提出了一种潜在的精确性分析。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
10+阅读 · 2018年5月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
10+阅读 · 2018年5月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员