Lag windows are commonly used in time series, econometrics, steady-state simulation, and Markov chain Monte Carlo to estimate time-average covariance matrices. In the presence of positive correlation of the underlying process, estimators of this matrix almost always exhibit significant negative bias, leading to undesirable finite-sample properties. We propose a new family of lag windows specifically designed to improve finite-sample performance by offsetting this negative bias. Any existing lag window can be adapted into a lugsail equivalent with no additional assumptions. We use these lag windows within spectral variance estimators and demonstrate its advantages in a linear regression model with autocorrelated and heteroskedastic residuals. We further employ the lugsail lag windows in weighted batch means estimators due to their computational efficiency on large simulation output. We obtain bias and variance results for these multivariate estimators and significantly weaken the mixing condition on the process. Superior finite-sample properties are illustrated in a vector autoregressive process and a Bayesian logistic regression model.
翻译:在时间序列、计量经济学、稳态模拟和Markov链条Monte Carlo中,通常使用拉子窗口来估计平均时间的共差矩阵。在存在基本过程正相关的情况下,这一矩阵的估算结果几乎总是显示出明显的负面偏差,导致不受欢迎的有限抽样特性。我们建议建立一个新的滞后窗口组合,专门通过抵消这种负面偏差来改进有限抽样性能。任何现有的滞后窗口都可以在无额外假设的情况下改制成一个浮桶。我们使用光谱差异估计仪中的这些滞后窗口,并展示其在具有与自动相关和热心残渣的线性回归模型中的优势。我们进一步使用加权批量计算值的滑轮拉子窗口,因为其计算效率是巨大的模拟输出。我们为这些多变量估量器获取偏差和差异结果,并大大削弱这一过程的混合条件。在矢量递增过程和巴耶斯的逻辑回归模型中演示了高度的有限抽样特性。