It is well-known that, when sufficiently young children encounter a new word, they tend to attach it to a meaning that does not have a word yet in their lexicon. In previous research, the strategy was shown to be optimal from an information theoretic standpoint. However, the information theoretic model employed neither explains the weakening of that vocabulary learning bias in older children or polylinguals nor reproduces Zipf's meaning-frequency law, namely the non-linear relationship between the number of meanings of a word and its frequency. Here we consider a generalization of the model that is channeled to reproduce that law. The analysis of the new model reveals regions of the phase space where the bias disappears consistently with the weakening or loss of the bias in older children or polylinguals. In the deep learning era, the model is a transparent low-dimensional tool for future experimental research and illustrates the predictive power of a theoretical framework originally designed to shed light on the origins of Zipf's rank-frequency law.


翻译:众所周知,当足够年幼的儿童遇到一个新词时,他们往往会把它附加到在他们的词汇中还没有一个词的含义上。在以前的研究中,战略从信息理论的角度显示是最佳的。然而,所使用的信息理论模型既没有解释该词汇在年长儿童或多种语言中学习偏见的削弱,也没有解释Zipf的含义频率法,即一个词的含义数量与其频率之间的非线性关系。我们在这里考虑将用于复制该法律的模型加以概括。对新模型的分析揭示了阶段空间的各个区域,在这些区域,偏见随着年长儿童或多种语言偏见的削弱或丧失而不断消失。在深层次的学习时代,该模型是未来实验研究的一个透明的低维工具,并说明了最初旨在揭示Zipf等级-频率法起源的理论框架的预测力。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员