In time division duplexing (TDD) millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) can be obtained from uplink channel estimation thanks to channel reciprocity. However, under high-mobility scenarios, frequent uplink channel estimation is needed due to channel aging. Additionally, large amounts of antennas and subcarriers result in high-dimensional CSI matrices, aggravating pilot training overhead. To address this, we propose a three-domain (3D) channel extrapolation framework across spatial, frequency, and temporal domains. First, considering the effectiveness of traditional knowledge-driven channel estimation methods and the marginal effects of pilots in the spatial and frequency domains, a knowledge-and-data driven spatial-frequency channel extrapolation network (KDD-SFCEN) is proposed for uplink channel estimation via joint spatial-frequency channel extrapolation to reduce spatial-frequency domain pilot overhead. Then, leveraging channel reciprocity and temporal dependencies, we propose a temporal uplink-downlink channel extrapolation network (TUDCEN) powered by generative artificial intelligence for slot-level channel extrapolation, aiming to reduce the tremendous temporal domain pilot overhead caused by high mobility. Numerical results demonstrate the superiority of the proposed framework in significantly reducing the pilot training overhead by 16 times and improving the system's spectral efficiency under high-mobility scenarios compared with state-of-the-art channel estimation/extrapolation methods.
翻译:暂无翻译