Named data networking (NDN) constructs a network by names, providing a flexible and decentralized way to manage resources within the edge computing continuum. This paper aims to solve the question, "Given a function with its parameters and metadata, how to select the executor in a distributed manner and obtain the result in NDN?" To answer it, we design R2 that involves the following stages. First, we design a name structure including data, function names, and other function parameters. Second, we develop a 2-phase mechanism, where in the first phase, the function request from a client-first reaches the data source and retrieves the metadata, then the best node is selected while the metadata is responding to the client. In the second phase, the chosen node directly retrieves the data, executes the function, and provides the result to the client. Furthermore, we propose a stop condition to intelligently reduce the processing time of the first phase and provide a simple proof and range analysis. Simulations confirm that R2 outperforms the current solutions in terms of resource allocation, especially when the data volume and the function complexity are high. In the experiments, when the data size is 100 KiB and the function complexity is $\mathcal{O}(n^2)$, the speedup ratio is 4.61. To further evaluate R2, we also implement a general intermediate data processing logic named ``Bolt'' implemented on an app-level in ndnSIM. We believe that R2 shall help the researchers and developers to verify their ideas smoothly.


翻译:命名数据网络 (NDN) 以名称构建一个网络, 提供灵活和分散的方式管理边缘计算连续中的资源。 本文旨在解答一个问题, “ 以参数和元数据提供功能, 如何以分布方式选择执行者, 并获得 NNDN 的结果? ” 为了回答这个问题, 我们设计 R2, 包括以下阶段。 首先, 我们设计一个名称结构, 包括数据、 函数名称和其他功能参数 。 第二, 我们开发一个二阶段机制, 在第一阶段, 客户端先到数据源并检索元数据, 然后在元数据响应客户时选择最佳节点 。 在第二阶段, 选择的节点直接检索数据, 执行函数, 并向客户提供结果 。 此外, 我们提出一个停止条件, 明智地缩短第一阶段的处理时间, 并提供简单的证据和范围分析 。 模拟确认 R2 在资源分配方面比当前解决方案快得多, 特别是当数据量量和函数复杂性高的时候 。 在实验中, 将数据级别 IM 进行 。 。 在 KI\ 的 运行中, 当数据大小 运行时, 将持续 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年9月30日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员