In a speech-to-speech translation (S2ST) pipeline, the text-to-speech (TTS) module is an important component for delivering the translated speech to users. To enable incremental S2ST, the TTS module must be capable of synthesizing and playing utterances while its input text is still streaming in. In this work, we focus on improving the incremental synthesis performance of TTS models. With a simple data augmentation strategy based on prefixes, we are able to improve the incremental TTS quality to approach offline performance. Furthermore, we bring our incremental TTS system to the practical scenario in combination with an upstream simultaneous speech translation system, and show the gains also carry over to this use-case. In addition, we propose latency metrics tailored to S2ST applications, and investigate methods for latency reduction in this context.


翻译:在语音到语音翻译(S2ST)管道中,文本到语音模块(TTS)模块是向用户发送译文的一个重要组成部分。为了能够实现递增 S2ST, TTS模块必须能够在输入文本仍在流进的同时能够合成和播放语音。在这项工作中,我们侧重于改进TS模型的递增合成性能。通过基于前缀的简单数据增强战略,我们能够改进递增 TTS质量,以接近离线性能。此外,我们把递增 TTS系统与上游同步语音翻译系统结合到实际情景中,并展示收益也延续到这一使用情况。此外,我们建议针对S2ST应用的延时度测量,并调查在这方面减少延时的方法。

0
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
专知会员服务
56+阅读 · 2021年3月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
120+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
近期声学领域前沿论文(No. 3)
深度学习每日摘要
24+阅读 · 2019年3月31日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Arxiv
14+阅读 · 2021年6月30日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
近期声学领域前沿论文(No. 3)
深度学习每日摘要
24+阅读 · 2019年3月31日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Top
微信扫码咨询专知VIP会员