This paper compares and ranks 11 UDA validation methods. Validators estimate model accuracy, which makes them an essential component of any UDA train-test pipeline. We rank these validators to indicate which of them are most useful for the purpose of selecting optimal models, checkpoints, and hyperparameters. In addition, we propose and compare new effective validators and significantly improved versions of existing validators. To the best of our knowledge, this large-scale benchmark study is the first of its kind in the UDA field.
翻译:本文比较了11种UDA验证方法,并将其排在第11位。验证人估计了模型准确性,使其成为UDA火车测试管道的基本组成部分。我们将这些验证人排在第一位,以表明其中哪些对选择最佳模型、检查站和超参数最为有用。此外,我们提议并比较新的有效验证人和大大改进的现有验证人。据我们所知,这一大规模基准研究是UDA领域首个此类研究。