This paper considers the problem of estimating high dimensional Laplacian constrained precision matrices by minimizing Stein's loss. We obtain a necessary and sufficient condition for existence of this estimator, that consists on checking whether a certain data dependent graph is connected. We also prove consistency in the high dimensional setting under the symmetrized Stein loss. We show that the error rate does not depend on the graph sparsity, or other type of structure, and that Laplacian constraints are sufficient for high dimensional consistency. Our proofs exploit properties of graph Laplacians, the matrix tree theorem, and a characterization of the proposed estimator based on effective graph resistances. We validate our theoretical claims with numerical experiments.
翻译:本文考虑了通过尽量减少Stein的损失来估计高维拉平板压缩精密基体的问题。 我们为这个估计仪的存在获得了必要和充分的条件,它包括检查某一数据依赖的图表是否连接在一起。 我们还证明,在对称 Stein 损失下的高维设置的一致性。 我们表明,错误率并不取决于图的孔径或其他类型的结构,而拉平板的制约足以保证高维一致性。 我们的证据利用了图 Laplacian 的特性、矩阵树的定理以及基于有效图形阻力的拟议的估计仪的特征。 我们用数字实验来验证我们的理论主张。