The majority of inverse kinematics (IK) algorithms search for solutions in a configuration space defined by joint angles. However, the kinematics of many robots can also be described in terms of distances between rigidly-attached points, which collectively form a Euclidean distance matrix. This alternative geometric description of the kinematics reveals an elegant equivalence between IK and the problem of low-rank matrix completion. We use this connection to implement a novel Riemannian optimization-based solution to IK for various articulated robots with symmetric joint angle constraints.
翻译:大部分反动运动学算法在由共同角度定义的配置空间中寻找解决方案。 但是,许多机器人的动力学也可以用硬连接点之间的距离来描述,这些点合起来构成欧clidean距离矩阵。这种对运动学的替代几何描述显示,在IK和低级别矩阵完成问题之间,两者是优雅的等同。我们利用这一连接来对具有对称性共同角度限制的各种显形机器人实施新型的Riemannian优化解决方案。