We refine the complexity landscape for enumeration problems by introducing very low classes defined by using Boolean circuits as enumerators. We locate well-known enumeration problems, e.g., from graph theory, Gray code enumeration, and propositional satisfiability in our classes. In this way we obtain a framework to distinguish between the complexity of different problems known to be in $\mathbf{DelayP}$, for which a formal way of comparison was not possible to this day.
翻译:我们通过引入使用布林电路作为查点器界定的非常低的等级来完善查点问题的复杂面貌。 我们从图表理论、灰色代码查点和主张的相对性等不同类别中找到众所周知的查点问题。 这样我们获得一个框架来区分已知以$\mathbf{DelayP} $( $) 确定的不同问题的复杂性,而对于这些问题,直到今天还无法进行正式的比较。