This paper redefines the foundations of asymmetric cryptography's homomorphic cryptosystems through the application of the Yoneda Lemma. It explicitly illustrates that widely adopted systems, including ElGamal, RSA, Benaloh, Regev's LWE, and NTRUEncrypt, directly derive from the principles of the Yoneda Lemma. This synthesis gives rise to a holistic homomorphic encryption framework named the Yoneda Encryption Scheme. Within this scheme, encryption is elucidated through the bijective maps of the Yoneda Lemma Isomorphism, and decryption seamlessly follows from the naturality of these maps. This unification suggests a conjecture for a unified model theory framework, providing a basis for reasoning about both homomorphic and fully homomorphic encryption (FHE) schemes. As a practical demonstration, the paper introduces an FHE scheme capable of processing arbitrary finite sequences of encrypted multiplications and additions without the need for additional tweaking techniques, such as squashing or bootstrapping. This not only underscores the practical implications of the proposed theoretical advancements but also introduces new possibilities for leveraging model theory and forcing techniques in cryptography to facilitate the design of FHE schemes.
翻译:暂无翻译