This paper is eligible for the Jack Keil Wolf ISIT Student Paper Award. Hypothesis testing for small-sample scenarios is a practically important problem. In this paper, we investigate the robust hypothesis testing problem in a data-driven manner, where we seek the worst-case detector over distributional uncertainty sets centered around the empirical distribution from samples using Sinkhorn distance. Compared with the Wasserstein robust test, the corresponding least favorable distributions are supported beyond the training samples, which provides a more flexible detector. Various numerical experiments are conducted on both synthetic and real datasets to validate the competitive performances of our proposed method.
翻译:本文有资格获得Jack Keil Wolf ISIT 学生论文奖。 小类假设情景的假说测试是一个实际重要的问题。 在本文中,我们以数据驱动的方式调查了强健的假设测试问题,我们在此寻找围绕Sinkhorn距离样本的经验分布的分布不确定情况最坏的检测器。与瓦塞斯坦强健的测试相比,在培训样本之外,相应的最不利的分布得到支持,而培训样本提供了更灵活的检测器。在合成和真实的数据集上进行了各种数字实验,以验证我们拟议方法的竞争性性能。