Nonconvex constrained optimization problems can be used to model a number of machine learning problems, such as multi-class Neyman-Pearson classification and constrained Markov decision processes. However, such kinds of problems are challenging because both the objective and constraints are possibly nonconvex, so it is difficult to balance the reduction of the loss value and reduction of constraint violation. Although there are a few methods that solve this class of problems, all of them are double-loop or triple-loop algorithms, and they require oracles to solve some subproblems up to certain accuracy by tuning multiple hyperparameters at each iteration. In this paper, we propose a novel gradient descent and perturbed ascent (GDPA) algorithm to solve a class of smooth nonconvex inequality constrained problems. The GDPA is a primal-dual algorithm, which only exploits the first-order information of both the objective and constraint functions to update the primal and dual variables in an alternating way. The key feature of the proposed algorithm is that it is a single-loop algorithm, where only two step-sizes need to be tuned. We show that under a mild regularity condition GDPA is able to find Karush-Kuhn-Tucker (KKT) points of nonconvex functional constrained problems with convergence rate guarantees. To the best of our knowledge, it is the first single-loop algorithm that can solve the general nonconvex smooth problems with nonconvex inequality constraints. Numerical results also showcase the superiority of GDPA compared with the best-known algorithms (in terms of both stationarity measure and feasibility of the obtained solutions).


翻译:非convex 限制优化问题可以用来模拟一些机器学习问题,例如多级 Neyman-Pearson 分类和限制 Markov 决策程序。 但是,这类问题具有挑战性,因为目标和限制都可能是非convex,所以很难平衡损失价值的减少和限制违规现象的减少。虽然有一些方法可以解决这类问题,但所有这些方法都是双环或三环算法,它们都要求有孔径解,以便通过在每次循环中调整多个超参数来精确地解决某些小问题。在本文件中,我们提出一个新的梯度下移和半弯曲调算法(GDPA ), 以解决平滑的非convex 不平等问题。 GDPA 是一种原始的算法, 它只能利用目标和制约功能函数的一阶信息, 以交替方式更新原始和双重变量。 拟议的算法的关键特征是它是一个单行算算法, 只有两个步序运算法的计算方法, 才能与GDP的两步段级级算法相比。 我们显示一个正常的卡- 水平的算法, 它在正常的状态下, 需要一种正常的状态下, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员