Linear systems with a tensor product structure arise naturally when considering the discretization of Laplace type differential equations or, more generally, multidimensional operators with separable coefficients. In this work, we focus on the numerical solution of linear systems of the form $\left(A_1\otimes I\otimes\dots\otimes I+\dots + I\otimes\dots I\otimes A_d\right)x=b$, where the matrices $A_t\in\mathbb R^{n\times n}$ are Hermitian positive definite and belong to the class of hierarchically semiseparable matrices. We propose and analyze a nested divide-and-conquer scheme, based on the technology of low-rank updates, that attains the quasi-optimal computational cost $\mathcal O(n^d\log(n))$. Our theoretical analysis highlights the role of inexactness in the nested calls of our algorithm and provides worst case estimates for the amplification of the residual norm. The performances are validated on 2D and 3D case studies.
翻译:在考虑 Laplace 类型差异方程式的离散化时, 或更一般地说, 具有可分离系数的多维运算器, 单线系统会自然产生 。 在这项工作中, 我们侧重于以左形( A_ 1\ otimes I\ otimes\dots\ otimes\ otimes I\\ otimes\ dots I\ otimes A_ d\rights A_ d\rights) x=b$ 的线性解析法系统的数字解决方案。 矩阵 $_ t\ in\ mathb R ⁇ n\ timets n} 是 Hermitian 确定为正数的, 属于可分等级的半分离矩阵类别 。 我们根据低级更新技术, 提议并分析嵌套的分隔和征服方案, 实现准最佳计算成本 $\ mathcal O( n ⁇ d\ log) =b$。 我们的理论分析突出表明不适应我们算算算算算算术的作用, 并提供最差的估测算法。