We study the eigenvalue distributions for sums of independent rank-one $k$-fold tensor products of large $n$-dimensional vectors. Previous results in the literature assume that $k=o(n)$ and show that the eigenvalue distributions converge to the celebrated Mar\v{c}enko-Pastur law under appropriate moment conditions on the base vectors. In this paper, motivated by quantum information theory, we study the regime where $k$ grows faster, namely $k=O(n)$. We show that the moment sequences of the eigenvalue distributions have a limit, which is different from the Mar\v{c}enko-Pastur law. As a byproduct, we show that the Mar\v{c}enko-Pastur law limit holds if and only if $k=o(n)$ for this tensor model. The approach is based on the method of moments.
翻译:我们研究的是独立的一等-一(k)美元乘以四倍高压产品,其中含有大额美元向量矢量。文献中的以往结果假定美元=o(n)美元,并表明在基准向量的适当条件下,该等值的分布会汇合到著名的Mar\v{c}enko-Pastur法律。在本文中,根据量子信息理论,我们研究的是美元增长较快的制度,即美元=O(n)美元。我们显示,该等值分布的时序有一定的限度,这与Mar\v{c}enko-Pastur法律不同。作为副产品,我们显示,Mar\v{c}enko-Pastur法律的极限只有在美元=o(n)美元对这个温度模型有效时,才会维持。这个方法以瞬间方法为基础。