We consider the facility location problem in two dimensions. In particular, we consider a setting where agents have Euclidean preferences, defined by their ideal points, for a facility to be located in $\mathbb{R}^2$. For the minisum objective and an odd number of agents, we show that the coordinate-wise median mechanism (CM) has a worst-case approximation ratio (AR) of $\sqrt{2}\frac{\sqrt{n^2+1}}{n+1}$. Further, we show that CM has the lowest AR for this objective in the class of deterministic, anonymous, and strategyproof mechanisms. For the $p-norm$ social welfare objective, we find that the AR for CM is bounded above by $2^{\frac{3}{2}-\frac{2}{p}}$ for $p\geq 2$. Since any deterministic strategyproof mechanism must have AR at least $2^{1-\frac{1}{p}}$ (\citet{feigenbaum_approximately_2017}), our upper bound suggests that the CM is (at worst) very nearly optimal. We conjecture that the approximation ratio of coordinate-wise median is actually equal to the lower bound $2^{1-\frac{1}{p}}$ (as is the case for $p=2$ and $p=\infty$) for any $p\geq 2$.
翻译:我们从两个方面来考虑设施定位问题。 特别是, 我们考虑一个设置, 使代理商拥有以理想点为定义的Euclidean偏好, 由他们的理想点来定义。 对于一个设施位于$$mathb{R ⁇ 2$2$2美元。 对于微型和奇数的代理商来说, 我们发现, 协调的中位机制(CM) 具有最差的近似比率(AR) $sqrt{2 ⁇ 2 ⁇ 2{frt{n2+1+1}$1美元。 此外, 我们发现, 在确定性、 匿名、 战略防偏差机制的类别中, CM 拥有此目标的最低AR值。 对于美元社会福利目标而言, 我们发现, $p-nolum$2$2{fr%2}- frqp$2。 由于任何确定性战略防偏差机制必须至少为$2 ⁇ 1\ferc%1} (\citet{feigen_ y_ comn_ 2017}, 我们的上下限调调调调的AR1=2_ irmal1=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx