We derive a Matern Gaussian process (GP) on the vertices of a hypergraph. This enables estimation of regression models of observed or latent values associated with the vertices, in which the correlation and uncertainty estimates are informed by the hypergraph structure. We further present a framework for embedding the vertices of a hypergraph into a latent space using the hypergraph GP. Finally, we provide a scheme for identifying a small number of representative inducing vertices that enables scalable inference through sparse GPs. We demonstrate the utility of our framework on three challenging real-world problems that concern multi-class classification for the political party affiliation of legislators on the basis of voting behaviour, probabilistic matrix factorisation of movie reviews, and embedding a hypergraph of animals into a low-dimensional latent space.
翻译:我们从高光图的顶部得出“马特尔高斯”进程(GP),从而能够估计与高光图结构相关的观测值或潜在值的回归模型,在高光图结构中,相关和不确定性的估计值可以据此得到信息;我们进一步提出了一个框架,利用高光图GP将高光图的脊椎嵌入潜在空间;最后,我们提供了一个计划,用以确定少数有代表性的诱导脊椎,通过稀有的GP可以伸缩推推推推推推。我们展示了我们在三个具有挑战性的现实世界问题的框架的效用,这三个问题涉及立法者在投票行为、电影审查的概率矩阵因素化和将动物高光谱嵌入低维度潜伏空间的基础上的政党所属多级分类,以及将动物高光谱植入低维度潜伏空间。