In this paper, we develop two variants of Bezout subresultants for several polynomials, i.e., hybrid Bezout subresultant and non-homogeneous Bezout subresultant. They are the extensions of the variants of Bezout subresultants for two polynomials to arbitrary number of polynomials. Experimental results show that the Bezout-type subresultants behave better than other known formulas when used to compute multi-polynomial subresultants, among which the non-homogeneous Bezout formula shows the best performance.
翻译:本文提出了两种多项式的贝祖次式变种,即混合贝祖次式和非齐次贝祖次式。它们是将二元多项式的贝祖次式变种推广到任意数量多项式的情况。实验结果表明,贝祖类型的次式与其他已知公式相比,计算多元多项式的次式时具有更好的性能,其中非齐次贝祖公式表现最佳。