Neural networks and other machine learning models compute continuous representations, while humans communicate with discrete symbols. Reconciling these two forms of communication is desirable to generate human-readable interpretations or to learn discrete latent variable models, while maintaining end-to-end differentiability. Some existing approaches (such as the Gumbel-softmax transformation) build continuous relaxations that are discrete approximations in the zero-temperature limit, while others (such as sparsemax transformations and the hard concrete distribution) produce discrete/continuous hybrids. In this paper, we build rigorous theoretical foundations for these hybrids. Our starting point is a new "direct sum" base measure defined on the face lattice of the probability simplex. From this measure, we introduce a new entropy function that includes the discrete and differential entropies as particular cases, and has an interpretation in terms of code optimality, as well as two other information-theoretic counterparts that generalize the mutual information and Kullback-Leibler divergences. Finally, we introduce "mixed languages" as strings of hybrid symbols and a new mixed weighted finite state automaton that recognizes a class of regular mixed languages, generalizing closure properties of regular languages.


翻译:神经网络和其他机器学习模型计算连续表达, 而人类则与离散符号进行通信。 调和这两种通信形式是可取的, 以产生人类可读的解释, 或者学习离散潜伏变量模型, 同时保持端到端的差异性。 一些现有的方法( 如 Gumber- softmax 转换) 建立连续的放松, 这些方法在零温限度内是离散近, 而另一些方法( 如 稀疏的负轴转换和硬混凝土分布) 则产生离散/ 连续的混合体。 在本文中, 我们为这些混合体建立严格的理论基础。 我们的起点是一个新的“ 直接总和” 基度测量, 定义在概率简单x的面盘中。 从此测量中, 我们引入了一个新的微积函数, 包括离散和差异的元素, 在零温度限制范围内, 以及另外两个信息- 理论对应方, 将共同的信息和 Kullback- Leiter 差异化。 最后, 我们引入“ 混合语言”, 作为常规混合混合符号和新组合定定的自动状态等语言的字符。

0
下载
关闭预览

相关内容

专知会员服务
72+阅读 · 2021年1月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员