In the technical report, we provide our solution for OGB-LSC 2022 Graph Regression Task. The target of this task is to predict the quantum chemical property, HOMO-LUMO gap for a given molecule on PCQM4Mv2 dataset. In the competition, we designed two kinds of models: Transformer-M-ViSNet which is an geometry-enhanced graph neural network for fully connected molecular graphs and Pretrained-3D-ViSNet which is a pretrained ViSNet by distilling geomeotric information from optimized structures. With an ensemble of 22 models, ViSNet Team achieved the MAE of 0.0723 eV on the test-challenge set, dramatically reducing the error by 39.75% compared with the best method in the last year competition.
翻译:在技术报告中,我们为 OGB-LSC 2022 图形回归任务提供了解决方案。 任务的目标是预测PCQM4Mv2数据集中某分子的量子化学属性、 HOMO-LUMO差距。 在竞争中,我们设计了两种模型: 变形器-M-VISNet,这是一个几何增强的图形神经网络,用于完全连接的分子图和预设的VISNet,这是通过从优化结构中提取地质地质学信息的预先培训的VISNet。 VISNet团队在测试-校正组合上共使用了22个模型,实现了0.0723 eV的MAE, 与去年竞争中的最佳方法相比,大大降低了39.75%的误差。