Recent advancements in Large Language Models (LLMs) have drawn increasing attention since the learned embeddings pretrained on large-scale datasets have shown powerful ability in various downstream applications. However, whether the learned knowledge by LLMs can be transferred to clinical cardiology remains unknown. In this work, we aim to bridge this gap by transferring the knowledge of LLMs to clinical Electrocardiography (ECG). We propose an approach for cardiovascular disease diagnosis and automatic ECG diagnosis report generation. We also introduce an additional loss function by Optimal Transport (OT) to align the distribution between ECG and language embedding. The learned embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation, and (2) zero-shot cardiovascular disease detection. Our approach is able to generate high-quality cardiac diagnosis reports and also achieves competitive zero-shot classification performance even compared with supervised baselines, which proves the feasibility of transferring knowledge from LLMs to the cardiac domain.
翻译:自对大型数据集进行预先培训的已有经验的嵌入器以来,大语言模型(LLMs)最近的进展日益引起人们的注意,因为对大型数据集进行预先培训的学习嵌入器在各种下游应用中表现出强大的能力,然而,LLMs所学的知识能否转移到临床心脏病学方面尚不得而知,在这项工作中,我们的目标是通过将LLMs的知识转移到临床心电图学(ECG)来弥合这一差距。我们提出了心血管疾病诊断和自动ECG诊断报告生成的方法。我们还引入了最佳运输公司的额外损失功能,以协调ECG和语言嵌入的分布。在两项下游任务上对所学的嵌入器进行了评估:(1) 自动ECG诊断报告生成,和(2) 零弹射心血管疾病检测。我们的方法能够产生高质量的心脏诊断报告,并实现竞争性的零射分级性性表现,即使与受监督的基线相比,这也证明了将知识从LMs转移到心脏领域的可行性。