Robustness of different pattern recognition methods is one of the key challenges in autonomous driving, especially when driving in the high variety of road environments and weather conditions, such as gravel roads and snowfall. Although one can collect data from these adverse conditions using cars equipped with sensors, it is quite tedious to annotate the data for training. In this work, we address this limitation and propose a CNN-based method that can leverage the steering wheel angle information to improve the road area semantic segmentation. As the steering wheel angle data can be easily acquired with the associated images, one could improve the accuracy of road area semantic segmentation by collecting data in new road environments without manual data annotation. We demonstrate the effectiveness of the proposed approach on two challenging data sets for autonomous driving and show that when the steering task is used in our segmentation model training, it leads to a 0.1-2.9% gain in the road area mIoU (mean Intersection over Union) compared to the corresponding reference transfer learning model.
翻译:不同模式识别方法的强力是自主驾驶的主要挑战之一,特别是在道路环境和天气条件(例如碎石路和雪崩)多种多样的情况下驾驶时,尤其是当驾驶时,尤其是当驾驶在道路环境和天气条件(例如碎石路和雪崩)高度变化时。虽然人们可以使用配备传感器的汽车从这些不利条件下收集数据,但是对培训数据进行说明却颇为乏味。在这项工作中,我们解决了这一局限性,并提出了一个有线电视新闻网为基础的方法,利用方向盘角度信息改善路段的语义分化。由于方向盘角度数据可以随相关图像很容易地获得,人们可以通过在新的道路环境中收集数据来提高路段语系分割的准确性,而无需人工说明。我们展示了对两套具有挑战性的自动驾驶数据集的拟议方法的有效性,并表明当我们分路模式培训中使用指导任务时,与相应的参考传输学习模式相比,在路段 mIoU(平均交错路段)中可带来0.1-2.9%的收益。