P values or risk ratios from multiple, independent studies, observational or randomized, can be computationally combined to provide an overall assessment of a research question in meta-analysis. There is a need to examine the reliability of these methods of combination. It is typical in observational studies to statistically test many questions and not correct the analysis results for multiple testing or multiple modeling, MTMM. The same problem can happen for randomized, experimental trials. There is the additional problem that some of the base studies may be using fabricated or fraudulent data. If there is no attention to MTMM or fraud in the base studies, there is no guarantee that the results to be combined are unbiased, the key requirement for the valid combining of results. We note that methods of combination are not robust; even one extreme base study value can overwhelm standard methods of combination. It is possible that multiple, extreme (MTMM or fraudulent) results can feed from the base studies to bias the combined result. A meta-analysis of observational (or even randomized studies) may not be reliable. Examples are given along with some methods to evaluate existing base studies and meta-analysis studies.
翻译:从多种独立研究、观察或随机研究得出的P值或风险比率,可以计算合并成一个整体评估元分析中的研究问题。有必要审查这些组合方法的可靠性。观察研究典型地从统计上检验许多问题,而不是纠正多重测试或多重建模(MTMM)的分析结果。同样的问题可能发生在随机实验中。还有另一个问题,一些基础研究可能使用伪造或欺诈数据。如果不注意MTMM或基础研究中的欺诈行为,则无法保证这些结果是公正的,这是有效合并结果的关键要求。我们注意到,组合方法不健全;即使是一个极端的基础研究价值也可能超过标准的组合方法。从基础研究中得出多重、极端(MTMM或欺诈性)的结果,从而可能使综合结果产生偏差。对观测研究(甚至随机化研究)进行元分析可能不可靠。在评估现有基础研究和元分析研究的一些方法的同时,也提供了一些实例。