The maximum number of edges in a graph with matching number m and maximum degree d has been determined in [1] and [2], where some extremal graphs have also been provided. Then, a new question has emerged: how the maximum edge count is affected by forbidding some subgraphs occurring in these extremal graphs? In [3], the problem is solved in triangle-free graphs for $d \geq m$, and for $d < m$ with either $Z(d) \leq m < 2d$ or $d \leq 6$, where $Z(d)$ is approximately $5d/4$. The authors derived structural properties of triangle-free extremal graphs, which allows us to focus on constructing small extremal components to form an extremal graph. Based on these findings, in this paper, we develop an integer programming formulation for constructing extremal graphs. Since our formulation is highly symmetric, we use our own implementation of Orbital Branching to reduce symmetry. We also implement our integer programming formulation so that the feasible region is restricted iteratively. Using a combination of the two approaches, we expand the solution into $d \leq 10$ instead of $d \leq 6$ for $m > d$. Our results endorse the formula for the number of edges in all extremal triangle-free graphs conjectured in [3].
翻译:在[1]和[2]中已经确定具有匹配数量m和最大度数d的图形中的最大边数,在这些极值图中还提供了一些极值图。然后,新的问题出现了:禁止这些极值图中出现的某些子图会如何影响最大边数?在[3]中,对于$d\geq m$的无三角图,对于$Z(d)\leq m<2d$或$ d\leq6 $的$d<m$,已经解决了这个问题,其中$Z(d)$约为$5d/4$。作者推导了无三角极值图的结构特性,这使我们可以集中精力构建小的极值组件以形成极值图。基于这些发现,在本文中,我们开发了一种整数规划公式来构建极值图。由于我们的公式高度对称,因此我们使用自己的Orbital Branching实现来减少对称性。我们还实现了我们的整数规划公式,以便迭代地限制可行区域。使用这两种方法的组合,我们将解决方案扩展到$d\leq10$,而不是$d\leq6$,对于$m>d$。我们的结果支持在[3]中猜测的所有极值无三角图中的边数公式。