We consider how an (almost) optimal parameter adaptation process for an adaptive DE might behave, and compare the behavior and performance of this approximately optimal process to that of existing, adaptive mechanisms for DE. An optimal parameter adaptation process is an useful notion for analyzing the parameter adaptation methods in adaptive DE as well as other adaptive evolutionary algorithms, but it cannot be known generally. Thus, we propose a Greedy Approximate Oracle method (GAO) which approximates an optimal parameter adaptation process. We compare the behavior of GAODE, a DE algorithm with GAO, to typical adaptive DEs on six benchmark functions and the BBOB benchmarks, and show that GAO can be used to (1) explore how much room for improvement there is in the performance of the adaptive DEs, and (2) obtain hints for developing future, effective parameter adaptation methods for adaptive DEs.
翻译:我们考虑了适应性DE的最佳参数适应过程(几乎)可能如何运作,并将这一大致最佳的DE适应机制的行为和表现与现有的DE适应机制的行为和表现进行比较。一个最佳参数适应过程是分析适应性DE和其他适应性进化算法中的参数适应方法的有用概念,但不能普遍知晓。因此,我们提出了一种接近最佳参数适应过程的贪婪近似甲骨文方法(GAO),我们将GAODE(DE算法)的行为与GAO(GAO)的行为与六个基准功能的典型适应性DE和BBBB基准进行比较,并表明GAO可以被用于(1) 探索适应性DE的绩效中有多大改进空间,(2) 为适应性DE开发未来有效的参数适应性参数适应方法获得提示。