We give a poly-time algorithm for the $k$-edge-connected spanning subgraph ($k$-ECSS) problem that returns a solution of cost no greater than the cheapest $(k+10)$-ECSS on the same graph. Our approach enhances the iterative relaxation framework with a new ingredient, which we call ghost values, that allows for high sparsity in intermediate problems. Our guarantees improve upon the best-known approximation factor of $2$ for $k$-ECSS whenever the optimal value of $(k+10)$-ECSS is close to that of $k$-ECSS. This is a property that holds for the closely related problem $k$-edge-connected spanning multi-subgraph ($k$-ECSM), which is identical to $k$-ECSS except edges can be selected multiple times at the same cost. As a consequence, we obtain a $\left(1+O\left(\frac{1}{k}\right)\right)$-approximation for $k$-ECSM, which resolves a conjecture of Pritchard and improves upon a recent $1+O\left(\frac{1}{k}\right)$ approximation of Karlin, Klein, Oveis Gharan, and Zhang. Moreover, we present a matching lower bound for $k$-ECSM, showing that our approximation ratio is tight up to the constant factor in $O\left(\frac{1}{k}\right)$, unless $P=NP$.
翻译:暂无翻译