A dominating set of a graph $G$ is a subset $S$ of its vertices such that each vertex of $G$ not in $S$ has a neighbor in $S$. A face-hitting set of a plane graph $G$ is a set $T$ of vertices in $G$ such that every face of $G$ contains at least one vertex of $T$. We show that the vertex-set of every plane (multi-)graph without isolated vertices, self-loops or $2$-faces can be partitioned into two disjoint sets so that both the sets are dominating and face-hitting. We also show that all the three assumptions above are necessary for the conclusion. As a corollary, we show that every $n$-vertex simple plane triangulation has a dominating set of size at most $(1 - \alpha)n/2$, where $\alpha n$ is the maximum size of an independent set in the triangulation. Matheson and Tarjan [European J. Combin., 1996] conjectured that every plane triangulation with a sufficiently large number of vertices $n$ has a dominating set of size at most $n / 4$. Currently, the best known general bound for this is by Christiansen, Rotenberg and Rutschmann [SODA, 2024] who showed that every plane triangulation on $n > 10$ vertices has a dominating set of size at most $2n/7$. Our corollary improves their bound for $n$-vertex plane triangulations which contain a maximal independent set of size either less than $2n/7$ or more than $3n/7$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员