In the paper we define three new complexity classes for Turing Machine undecidable problems inspired by the famous Cook/Levin's NP-complete complexity class for intractable problems. These are U-complete (Universal complete), D-complete (Diagonalization complete) and H-complete (Hypercomputation complete) classes. We started the population process of these new classes. We justify that some super-Turing models of computation, i.e., models going beyond Turing machines, are tremendously expressive and they allow to accept arbitrary languages over a given alphabet including those undecidable ones. We prove also that one of such super-Turing models of computation -- the \$-Calculus, designed as a tool for automatic problem solving and automatic programming, has also such tremendous expressiveness. We investigate also completeness of cost metrics and meta-search algorithms in \$-calculus.
翻译:在论文中,我们为图灵机器定义了三个新的复杂类别,这是由著名的库克/列文的NP-完整复杂类别引发的难以解决的问题。这些类别是U-完整(通用完成)、D-完整(成分完成)和H-完整(完成计算完成)类。我们开始了这些新类别的人口过程。我们有理由认为,一些超演计算模型,即超越图灵机器的模型,具有极大的表达性,它们允许在特定字母上任意使用语言,包括无法确定的那些字母。我们还证明,这种超级试验计算模型之一,即用来自动解决问题和自动编程的工具$-Calculs, 也具有如此巨大的清晰性。我们还调查了成本衡量和元研究算法在$计算中的完整性。