Integrating multi-modal data to promote medical image analysis has recently gained great attention. This paper presents a novel scheme to learn the mutual benefits of different modalities to achieve better segmentation results for unpaired multi-modal medical images. Our approach tackles two critical issues of this task from a practical perspective: (1) how to effectively learn the semantic consistencies of various modalities (e.g., CT and MRI), and (2) how to leverage the above consistencies to regularize the network learning while preserving its simplicity. To address (1), we leverage a carefully designed External Attention Module (EAM) to align semantic class representations and their correlations of different modalities. To solve (2), the proposed EAM is designed as an external plug-and-play one, which can be discarded once the model is optimized. We have demonstrated the effectiveness of the proposed method on two medical image segmentation scenarios: (1) cardiac structure segmentation, and (2) abdominal multi-organ segmentation. Extensive results show that the proposed method outperforms its counterparts by a wide margin.


翻译:本文提出了一种新的方案,学习不同模态之间的相互关联,以实现对未配对多模态医学图像更好的分割结果。从实际角度出发,该方法解决了两个关键问题:(1)如何有效地学习不同模态(例如CT和MRI)之间的语义一致性,(2)如何利用上述的一致性,规范网络学习并保持其简单性。为了解决(1)问题,我们利用一个精心设计的外部注意力模块(EAM),对齐不同模态的语义类表示和它们的相关性。为了解决(2)问题,所提出的EAM被设计成一个外部即插即用的模块,一旦模型优化完成则可以舍弃。我们在两种医学图像分割场景下展示了该方法的有效性:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的性能超过了其他方法。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员