Next location prediction is a discipline that involves predicting a users next location. Its applications include resource allocation, quality of service, energy efficiency, and traffic management. This paper proposes an energy-efficient, small, and low parameter machine learning (ML) architecture for accurate next location prediction, deployable on modest base stations and edge devices. To accomplish this we ran a hundred hyperparameter experiments on the full human mobility patterns of an entire city, to determine an exact ML architecture that reached a plateau of accuracy with the least amount of model parameters. We successfully achieved a reduction in the number of model parameters within published ML architectures from 202 million down to 2 million. This reduced the total size of the model parameters from 791 MB down to 8 MB. Additionally, this decreased the training time by a factor of four, the amount of graphics processing unit (GPU) memory needed for training by a factor of twenty, and the overall accuracy was increased from 80.16% to 82.54%. This improvement allows for modest base stations and edge devices which do not have a large amount of memory or storage, to deploy and utilize the proposed ML architecture for next location prediction.
翻译:暂无翻译