We present Chebyshev type cubature rules for the exact integration of rational symmetric functions with poles on prescribed coordinate hyperplanes. Here the integration is with respect to the densities of unitary Jacobi ensembles stemming from the Haar measures of the orthogonal and the compact symplectic Lie groups.
翻译:我们提出Chebyshev型的立方规则,用于精确积分具有指定坐标超平面上的极点的有理对称函数。此处的积分是针对源自正交和紧致辛李群的Haar测量的Unitary Jacobi集合的密度的积分。