The diamond is the graph obtained by removing an edge from the complete graph on 4 vertices. A graph is ($P_6$, diamond)-free if it contains no induced subgraph isomorphic to a six-vertex path or a diamond. In this paper we show that the chromatic number of a ($P_6$, diamond)-free graph $G$ is no larger than the maximum of 6 and the clique number of $G$. We do this by reducing the problem to imperfect ($P_6$, diamond)-free graphs via the Strong Perfect Graph Theorem, dividing the imperfect graphs into several cases, and giving a proper colouring for each case. We also show that there is exactly one 6-vertex-critical ($P_6$, diamond, $K_6$)-free graph. Together with the Lov\'asz theta function, this gives a polynomial time algorithm to compute the chromatic number of ($P_6$, diamond)-free graphs.
翻译:钻石是从4个顶端的完整图表中去除边缘而获得的图。 如果一个图不包含引导的六高端路径或钻石的子变形, 则该图为$P_ 6, 钻石) 。 在本文中, 我们显示一个无色图$P_ 6, 钻石的色数并不大于6 和千兆元。 我们这样做的方法是通过“ 强烈完美图形理论” 将问题降低到不完善的($P_ 6, 钻石) 无色图, 将不完善的图表分为几个案例, 并为每个案例提供一个适当的颜色 。 我们还显示, 有一个完全的六高端( $P_ 6, 钻石, $K_ 6) 的无色数。 与 Lov\' asz theta 函数一起, 这给了计算无色图( $P_ 6, 钻石) 的色数的多元时间算法 。