Knowledge graph embedding, which projects symbolic entities and relations into continuous vector spaces, is gaining increasing attention. Previous methods allow a single static embedding for each entity or relation, ignoring their intrinsic contextual nature, i.e., entities and relations may appear in different graph contexts, and accordingly, exhibit different properties. This work presents Contextualized Knowledge Graph Embedding (CoKE), a novel paradigm that takes into account such contextual nature, and learns dynamic, flexible, and fully contextualized entity and relation embeddings. Two types of graph contexts are studied: edges and paths, both formulated as sequences of entities and relations. CoKE takes a sequence as input and uses a Transformer encoder to obtain contextualized representations. These representations are hence naturally adaptive to the input, capturing contextual meanings of entities and relations therein. Evaluation on a wide variety of public benchmarks verifies the superiority of CoKE in link prediction and path query answering. It performs consistently better than, or at least equally well as current state-of-the-art in almost every case, in particular offering an absolute improvement of 19.7% in H@10 on path query answering. Our code is available at \url{https://github.com/paddlepaddle/models/tree/develop/PaddleKG/CoKE}.

6
下载
关闭预览

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

0
7
下载
预览

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

0
25
下载
预览

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

0
11
下载
预览

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

0
10
下载
预览

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

0
8
下载
预览

Link prediction is critical for the application of incomplete knowledge graph (KG) in the downstream tasks. As a family of effective approaches for link predictions, embedding methods try to learn low-rank representations for both entities and relations such that the bilinear form defined therein is a well-behaved scoring function. Despite of their successful performances, existing bilinear forms overlook the modeling of relation compositions, resulting in lacks of interpretability for reasoning on KG. To fulfill this gap, we propose a new model called DihEdral, named after dihedral symmetry group. This new model learns knowledge graph embeddings that can capture relation compositions by nature. Furthermore, our approach models the relation embeddings parametrized by discrete values, thereby decrease the solution space drastically. Our experiments show that DihEdral is able to capture all desired properties such as (skew-) symmetry, inversion and (non-) Abelian composition, and outperforms existing bilinear form based approach and is comparable to or better than deep learning models such as ConvE.

0
8
下载
预览

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

0
6
下载
预览

We introduce a new method DOLORES for learning knowledge graph embeddings that effectively captures contextual cues and dependencies among entities and relations. First, we note that short paths on knowledge graphs comprising of chains of entities and relations can encode valuable information regarding their contextual usage. We operationalize this notion by representing knowledge graphs not as a collection of triples but as a collection of entity-relation chains, and learn embeddings for entities and relations using deep neural models that capture such contextual usage. In particular, our model is based on Bi-Directional LSTMs and learn deep representations of entities and relations from constructed entity-relation chains. We show that these representations can very easily be incorporated into existing models to significantly advance the state of the art on several knowledge graph prediction tasks like link prediction, triple classification, and missing relation type prediction (in some cases by at least 9.5%).

0
5
下载
预览

Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2Vec, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2Vec is comparable to the quality of the scalable state-of-the-art approaches and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware.

0
7
下载
预览

Knowledge bases (KBs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform knowledge base completion or link prediction, i.e., predict whether a relationship not in the knowledge base is likely to be true. This article serves as a brief overview of embedding models of entities and relationships for knowledge base completion, summarizing up-to-date experimental results on standard benchmark datasets FB15k, WN18, FB15k-237, WN18RR, FB13 and WN11.

0
5
下载
预览
小贴士
相关论文
Orthogonal Relation Transforms with Graph Context Modeling for Knowledge Graph Embedding
Yun Tang,Jing Huang,Guangtao Wang,Xiaodong He,Bowen Zhou
7+阅读 · 2020年4月9日
Hongwei Wang,Hongyu Ren,Jure Leskovec
25+阅读 · 2020年2月17日
Chuxu Zhang,Huaxiu Yao,Chao Huang,Meng Jiang,Zhenhui Li,Nitesh V. Chawla
11+阅读 · 2019年11月26日
Efficiently Embedding Dynamic Knowledge Graphs
Tianxing Wu,Arijit Khan,Huan Gao,Cheng Li
10+阅读 · 2019年10月15日
Liang Yao,Chengsheng Mao,Yuan Luo
8+阅读 · 2019年9月11日
Canran Xu,Ruijiang Li
8+阅读 · 2019年6月3日
Xuelu Chen,Muhao Chen,Weijia Shi,Yizhou Sun,Carlo Zaniolo
6+阅读 · 2019年2月26日
Haoyu Wang,Vivek Kulkarni,William Yang Wang
5+阅读 · 2018年10月31日
Tommaso Soru,Stefano Ruberto,Diego Moussallem,Edgard Marx,Diego Esteves,Axel-Cyrille Ngonga Ngomo
7+阅读 · 2018年3月21日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
动态知识图谱补全论文合集
专知
46+阅读 · 2019年4月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
25+阅读 · 2019年4月12日
无监督元学习表示学习
CreateAMind
20+阅读 · 2019年1月4日
「知识表示学习」专题论文推荐 | 每周论文清单
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
5+阅读 · 2017年12月8日
Top