A simplicial vertex of a graph is a vertex whose neighborhood is a clique. It is known that listing all simplicial vertices can be done in $O(nm)$ time or $O(n^{\omega})$ time, where $O(n^{\omega})$ is the time needed to perform a fast matrix multiplication. The notion of avoidable vertices generalizes the concept of simplicial vertices in the following way: a vertex $u$ is avoidable if every induced path on three vertices with middle vertex $u$ is contained in an induced cycle. We present algorithms for listing all avoidable vertices of a graph through the notion of minimal triangulations and common neighborhood detection. In particular we give algorithms with running times $O(n^{2}m)$ and $O(n^{1+\omega})$, respectively. However, we propose a faster algorithm that runs in time $O(n^2 + m^2)$, and thus matches the corresponding running time of listing the simplicial vertices on sparse graphs with $m=O(n)$. To complement our results, we consider their natural generalizations of avoidable edges and avoidable paths. We propose an $O(nm)$-time algorithm that recognizes whether a given induced path is avoidable.
翻译:图形的简单顶点是一个顶点, 其周围是一个圆形。 众所周知, 列出所有简化的顶点都可以在 $( nm) 时间或 $( no ⁇ omega}) 时间上完成, $( n ⁇ omega} ) 是执行快速矩阵乘法所需的时间 。 可避免的顶点概念以下列方式概括了简化的顶点概念 : 如果三个带有中间顶点的顶点每一条引出路径都包含在循环中, 则顶点美元 。 我们通过最小三角定位概念和常见邻居检测来列出图表中所有可避免的顶点。 特别是我们给出运行时间为 $( n ⁇ 2) 和 $( n ⁇ 1 ⁇ omega} 概念。 然而, 我们建议一种快速的算法, 以时间( $( n%2 + m ⁇ 2) 美元为周期内, 以循环方式列出三个顶点的顶点。 我们提出一个快速的顶点, 将匹配一个图表的顶点显示我们一般的平面的平面 。