In distributed differential privacy, the parties perform analysis over their joint data while preserving the privacy for both datasets. Interestingly, for a few fundamental two-party functions such as inner product and Hamming distance, the accuracy of the distributed solution lags way behind what is achievable in the client-server setting. McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [FOCS '10] proved that this gap is inherent, showing upper bounds on the accuracy of (any) distributed solution for these functions. These limitations can be bypassed when settling for computational differential privacy, where the data is differentially private only in the eyes of a computationally bounded observer, using public-key cryptography primitives. We prove that the use of public-key cryptography is necessary for bypassing the limitation of McGregor et al., showing that a non-trivial solution for the inner-product, or the Hamming distance, implies the existence of a key-agreement protocol. Our bound implies a combinatorial proof for the fact that non-Boolean inner product of independent (strong) Santha-Vazirani sources is a good condenser. We obtain our main result by showing that the inner-product of a (single, strong) SV source with a uniformly random seed is a good condenser, even when the seed and source are dependent.


翻译:在分布式的隐私中,各方对其联合数据进行了分析,同时保留了这两个数据集的隐私。有趣的是,对于内部产品和Hamming距离等几个基本的两方功能,分布式解决方案的准确性远远落后于客户服务器设置中可以实现的。 McGregor、Mironov、Pitassi、Reingold、Talwar和Vadhan[FOCS'10]证明了这一差距是内在的,显示了这些功能分配式解决方案的准确性(任何)的上限。在解决计算式差异隐私时,这些限制可以被绕过,因为数据只在计算式封闭的观察者眼中以不同的私性为特点,使用公共钥匙加密的解决方案的准确性远远落后于客户服务器设置中可以实现的准确性。 我们证明,使用公用钥匙加密的密码法是绕过Mcgregregorgororgors, 或Hamming 距离意味着存在一个关键协议的任意性证据。我们的约束意味着,即使非Boolean 内部产品在计算上也是一种坚固的种子核心产品,我们内部的源(坚固的) 也是我们获得一个坚固的精密的精密的内源。

0
下载
关闭预览

相关内容

【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Applying Differential Privacy to Tensor Completion
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月13日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员