In experiments where one searches a large parameter space for an anomaly, one often finds many spurious noise-induced peaks in the likelihood. This is known as the look-elsewhere effect, and must be corrected for when performing statistical analysis. This paper introduces a method to calibrate the false alarm probability (FAP), or $p$-value, for a given dataset by considering the heights of the highest peaks in the likelihood. In the simplest form of self-calibration, the look-elsewhere-corrected $\chi^2$ of a physical peak is approximated by the $\chi^2$ of the peak minus the $\chi^2$ of the highest noise-induced peak. Generalizing this concept to consider lower peaks provides a fast method to quantify the statistical significance with improved accuracy. In contrast to alternative methods, this approach has negligible computational cost as peaks in the likelihood are a byproduct of every peak-search analysis. We apply to examples from astronomy, including planet detection, periodograms, and cosmology.


翻译:在为异常点寻找大参数空间的实验中,人们常常发现许多虚假的噪音诱发峰值的可能性。 这被称为外观效应, 在进行统计分析时必须加以纠正。 本文引入了一种方法来校准假警报概率(FAP), 或美元价值($p- value), 用于某个特定数据集, 其方法是考虑最高峰值的可能性的高度。 在自我校正的最简单的形式中, 物理峰值的外观( $\ chi_ 2美元) 被校正的外观值大约为峰值的$\ chi2美元, 减去最高噪音诱发峰值的$\ chi_ 2美元。 普遍考虑低峰值提供了一种快速的方法, 以更高的准确度来量化统计意义。 与替代方法相比, 这种方法的计算成本微不足道, 因为可能性的峰值是每次峰值研究的副产物。 我们应用天文学的例子, 包括行星探测、 期图和宇宙学。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
182+阅读 · 2020年7月29日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
182+阅读 · 2020年7月29日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员