In experiments where one searches a large parameter space for an anomaly, one often finds many spurious noise-induced peaks in the likelihood. This is known as the look-elsewhere effect, and must be corrected for when performing statistical analysis. This paper introduces a method to calibrate the false alarm probability (FAP), or $p$-value, for a given dataset by considering the heights of the highest peaks in the likelihood. In the simplest form of self-calibration, the look-elsewhere-corrected $\chi^2$ of a physical peak is approximated by the $\chi^2$ of the peak minus the $\chi^2$ of the highest noise-induced peak. Generalizing this concept to consider lower peaks provides a fast method to quantify the statistical significance with improved accuracy. In contrast to alternative methods, this approach has negligible computational cost as peaks in the likelihood are a byproduct of every peak-search analysis. We apply to examples from astronomy, including planet detection, periodograms, and cosmology.
翻译:在为异常点寻找大参数空间的实验中,人们常常发现许多虚假的噪音诱发峰值的可能性。 这被称为外观效应, 在进行统计分析时必须加以纠正。 本文引入了一种方法来校准假警报概率(FAP), 或美元价值($p- value), 用于某个特定数据集, 其方法是考虑最高峰值的可能性的高度。 在自我校正的最简单的形式中, 物理峰值的外观( $\ chi_ 2美元) 被校正的外观值大约为峰值的$\ chi2美元, 减去最高噪音诱发峰值的$\ chi_ 2美元。 普遍考虑低峰值提供了一种快速的方法, 以更高的准确度来量化统计意义。 与替代方法相比, 这种方法的计算成本微不足道, 因为可能性的峰值是每次峰值研究的副产物。 我们应用天文学的例子, 包括行星探测、 期图和宇宙学。