Current methods of graph signal processing rely heavily on the specific structure of the underlying network: the shift operator and the graph Fourier transform are both derived directly from a specific graph. In many cases, the network is subject to error or natural changes over time. This motivated a new perspective on GSP, where the signal processing framework is developed for an entire class of graphs with similar structures. This approach can be formalized via the theory of graph limits, where graphs are considered as random samples from a distribution represented by a graphon. When the network under consideration has underlying symmetries, they may be modeled as samples from Cayley graphons. In Cayley graphons, vertices are sampled from a group, and the link probability between two vertices is determined by a function of the two corresponding group elements. Infinite groups such as the 1-dimensional torus can be used to model networks with an underlying spatial reality. Cayley graphons on finite groups give rise to a Stochastic Block Model, where the link probabilities between blocks form a (edge-weighted) Cayley graph. This manuscript summarizes some work on graph signal processing on large networks, in particular samples of Cayley graphons.


翻译:当前的图信号处理方法严重依赖于底层网络的特定结构:移位操作和图傅里叶变换都直接来自于特定的图形。在许多情况下,网络会受到误差或随时间的自然变化的影响。这促使了对GSP的新视角,其中信号处理框架是为具有类似结构的整个图形类开发的。这种方法可以通过图极限理论来形式化,其中图形被认为是由一个图形表示的分布的随机样本。当所考虑的网络具有底层对称性时,可以将它们建模为样本Cayley图形。在Cayley图形中,顶点是从一个组中抽样的,并且两个相应组元素的函数决定两个顶点之间的联接概率。可以使用无限群(如一维环)来模拟具有底层空间实际性质的网络。有限群的Cayley图形产生随机块模型,其中块之间的联接概率形成(加权)Cayley图。本文总结了关于大型网络,特别是Cayley图形样本的图信号处理中的一些工作。

0
下载
关闭预览

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
19+阅读 · 2021年2月4日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员