This work extends the randomized shortest paths (RSP) model by investigating the net flow RSP and adding capacity constraints on edge flows. The standard RSP is a model of movement, or spread, through a network interpolating between a random-walk and a shortest-path behavior [30, 42, 49]. The framework assumes a unit flow injected into a source node and collected from a target node with flows minimizing the expected transportation cost, together with a relative entropy regularization term. In this context, the present work first develops the net flow RSP model considering that edge flows in opposite directions neutralize each other (as in electric networks), and proposes an algorithm for computing the expected routing costs between all pairs of nodes. This quantity is called the net flow RSP dissimilarity measure between nodes. Experimental comparisons on node clustering tasks indicate that the net flow RSP dissimilarity is competitive with other state-of-the-art dissimilarities. In the second part of the paper, it is shown how to introduce capacity constraints on edge flows, and a procedure is developed to solve this constrained problem by exploiting Lagrangian duality. These two extensions should improve significantly the scope of applications of the RSP framework.
翻译:这项工作通过调查净流量 RSP 和增加边际流动的能力限制来扩展随机最短路径模式(RSP) 。 标准 RSP 是一种流动模式, 或通过随机行与最短路径行为[30、42、49]之间的网络交错而传播的模式。 框架假设向源节点注入单位流动,并从目标节点收集单位流动,将预期运输成本降到最低,同时使用相对的变异性术语。 在这一背景下, 当前的工作首先开发净流量RSP 模式, 认为边缘流动会相互抵消( 如在电网中), 并提出了计算所有节点对口之间预期航线成本的算法。 这个数量被称为净流量 RSP 差异度测量。 对节点组合任务的实验性比较表明, 净流量RSP 差异与其他最先进的不相似性具有竞争力。 在本文第二部分, 显示如何引入边际流动的能力限制, 并且正在开发一种程序, 以利用 Ragranchian 双向框架来解决这一受限制的问题。