Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environments, hurricanes, and ocean currents. Often constrained in their actuation capabilities, the dynamics of these mobile sensors depend strongly on the background flow, making their deployment and control particularly challenging. Therefore, efficient trajectory planning with partial knowledge about the background flow is essential for teams of mobile sensors to adaptively sense and monitor their environments. In this work, we investigate the use of finite-horizon model predictive control (MPC) for the energy-efficient trajectory planning of an active mobile sensor in an unsteady fluid flow field. We uncover connections between the finite-time optimal trajectories and finite-time Lyapunov exponents (FTLE) of the background flow, confirming that energy-efficient trajectories exploit invariant coherent structures in the flow. We demonstrate our findings on the unsteady double gyre vector field, which is a canonical model for chaotic mixing in the ocean. We present an exhaustive search through critical MPC parameters including the prediction horizon, maximum sensor actuation, and relative penalty on the accumulated state error and actuation effort. We find that even relatively short prediction horizons can often yield nearly energy-optimal trajectories. These results are promising for the adaptive planning of energy-efficient trajectories for swarms of mobile sensors in distributed sensing and monitoring.


翻译:智能移动传感器,如无人居住的空中或水下飞行器,正在环境感测和监测应用中变得十分普遍。这些主动感测平台在不稳定的流体流中运行,包括风性城市环境、飓风和洋流。这些移动传感器的动态性能往往受到制约,往往在很大程度上取决于背景流,使其部署和控制特别具有挑战性。因此,对背景流有部分了解的高效轨迹规划对于流动传感器小组适应性感知并监测其环境至关重要。在这项工作中,我们调查使用定压偏差模型预测控制(MPC),在不稳定的流体流体流场中规划一个活跃的移动传感器的节能轨迹。我们发现这些移动传感器的定时最佳轨迹与定时Lyapunov动力(FTLEL)之间的联系,确认节能轨迹利用流动中的变化性连贯结构。我们展示了我们关于不稳定的双轨矢量矢量矢量场的发现,这是在海洋中进行短时间混乱的罐状轨迹模型。我们经常通过临界的轨迹感测测测算法进行最彻底的流能性测测测测测测测测测,包括精确测测测测测测测测测测测测测测测测测测测测测测测测。我们测测测测测测测测测测测测测测测测度,测测测测测测测测测测测测测测测测测测测测度,测测测测测度,测测测测测测测测测测测测测测测测测测度,测测测测测测测测测测测测测测测测测测测测测测测度,测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测度等测结果。

0
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月13日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员