In this paper, we analyze the properties of invertible neural networks, which provide a way of solving inverse problems. Our main focus lies on investigating and controlling the Lipschitz constants of the corresponding inverse networks. Without such an control, numerical simulations are prone to errors and not much is gained against traditional approaches. Fortunately, our analysis indicates that changing the latent distribution from a standard normal one to a Gaussian mixture model resolves the issue of exploding Lipschitz constants. Indeed, numerical simulations confirm that this modification leads to significantly improved sampling quality in multimodal applications.
翻译:在本文中,我们分析了不可逆神经网络的特性,这些神经网络提供了解决反向问题的一种方法。我们的主要重点是调查和控制相应的反向网络的利普施茨常数。没有这样的控制,数字模拟很容易出错,对传统方法则没有多少好处。幸运的是,我们的分析表明,将潜在分布从标准正常模式转变为高斯混合模式解决了爆炸利普施茨常数的问题。 事实上,数字模拟证实,这一修改导致多式联运应用的取样质量显著提高。