We investigate a deep learning approach to efficiently perform Bayesian inference in partial differential equation (PDE) and integral equation models over potentially high-dimensional parameter spaces. The contributions of this paper are two-fold; the first is the introduction of a neural network approach to approximating the solutions of Fredholm and Volterra integral equations of the first and second kind. The second is the development of a new, efficient deep learning-based method for Bayesian inversion applied to problems that can be described by PDEs or integral equations. To achieve this we introduce a surrogate model, and demonstrate how this allows efficient sampling from a Bayesian posterior distribution in which the likelihood depends on the solutions of PDEs or integral equations. Our method relies on the direct approximation of parametric solutions by neural networks, without need of traditional numerical solves. This deep learning approach allows the accurate and efficient approximation of parametric solutions in significantly higher dimensions than is possible using classical discretisation schemes. Since the approximated solutions can be cheaply evaluated, the solutions of Bayesian inverse problems over large parameter spaces are efficient using Markov chain Monte Carlo. We demonstrate the performance of our method using two real-world examples; these include Bayesian inference in the PDE and integral equation case for an example from electrochemistry, and Bayesian inference of a function-valued heat-transfer parameter with applications in aviation.
翻译:我们调查了一种深层次的学习方法,以便在部分差异方程(PDE)和综合方程模型中有效地进行巴伊西亚的推断,在潜在的高维参数空间上,采用部分差异方程(PDE)和整体方程模型。本文的贡献是双重的;本文的贡献是:采用神经网络方法,以近似Fredholm和Voltererra的第一和第二类整体方程的解决方案;第二,为巴伊西亚的反向转换方法开发一种新的、高效的深层次学习方法,该方法适用于PDEs或整体方程可以描述的问题。为了实现这一方法,我们引入了一种替代模型,并展示了如何从巴伊西亚的后方参数分布中进行高效取样,其中的可能性取决于PDEs或整体方程的解决方案。我们的方法依靠的是神经网络对准的参数解决方案的直接近似值,而不需要传统的数字方程解决方案。这一深层次的学习方法使得对巴伊西亚的反面解决方案的近似近似近似近似近似近似近似近似近似近似近似近似近似方法,因此,在大基参数空间的参数空间的两反向应用大基参数空间空间应用了马可达索尔夫·卡路德·卡路路德·卡路德·卡路德·卡路德罗(我们用了我们综合的航空平方平方平方程)的飞行的飞行的飞行的飞行的典型的飞行的典型的例法。