Structural identifiability is a property of an ODE model with parameters that allows for the parameters to be determined from continuous noise-free data. This is natural prerequisite for practical identifiability. Conducting multiple independent experiments could make more parameters or functions of parameters identifiable, which is a desirable property to have. How many experiments are sufficient? In the present paper, we provide an algorithm to determine the exact number of experiments for multi-experiment local identifiability and obtain an upper bound that is off at most by one for the number of experiments for multi-experiment global identifiability. Interestingly, the main theoretical ingredient of the algorithm has been discovered and proved using model theory (in the sense of mathematical logic). We hope that this unexpected connection will stimulate interactions between applied algebra and model theory, and we provide a short introduction to model theory in the context of parameter identifiability. As another related application of model theory in this area, we construct a nonlinear ODE system with one output such that single-experiment and mutiple-experiment identifiability are different for the system. This contrasts with recent results about single-output linear systems. We also present a Monte Carlo randomized version of the algorithm with a polynomial arithmetic complexity. Implementation of the algorithm is provided and its performance is demonstrated on several examples. The source code is available at https://github.com/pogudingleb/ExperimentsBound.
翻译:结构性可识别性是一个ODE模型的属性, 参数允许从连续无噪音数据中确定参数。 这是实际可识别性的自然先决条件。 进行多重独立实验可以使参数的参数或功能具有更多的可识别性, 这是一种可取的属性。 有多少实验是足够的? 本文中, 我们提供了一个算法, 用来确定多探索本地可识别性实验的确切实验数量, 并获得一个最多由一个参数来决定多探索性全球可识别性实验数量的非线性ODE系统。 有趣的是, 算法的主要理论成分已经通过模型理论( 数学逻辑意义上的) 被发现和证明。 我们希望, 这种意外的联系将刺激应用的代数和模型理论之间的相互作用。 我们为参数可识别性提供一个简短的模型理论介绍。 作为这方面模型理论的另一个相关应用, 我们构建一个非线性ODE系统, 其输出为单探索性和模拟性全球可识别性。 我们为这个系统提供了一种不同的识别性模型。 与当前单项定义/ 模拟性算算法的这一对比, 其最新版本的模拟性演算法是若干次的版本。 。 模拟性演算法的模型是一系列的版本。