Identifying defective items in larger sets is a main problem with many applications in real life situations. We consider the problem of localizing defective nodes in networks through an approach based on boolean network tomography (BNT), which is grounded on inferring informations from the boolean outcomes of end-to-end measurements paths. {\em Identifiability} conditions on the set of paths which guarantee discovering or counting unambiguously the defective nodes are of course very relevant. We investigate old and introduce new identifiability conditions contributing this problem both from a theoretical and applied perspective. (1) What is the precise tradeoff between number of nodes and number of paths such that at most $k$ nodes can be identified unambiguously ? The answer is known only for $k=1$ and we answer the question for any $k$, setting a problem implicitly left open in previous works. (2) We study upper and lower bounds on the number of unambiguously identifiable nodes, introducing new identifiability conditions which strictly imply and are strictly implied by unambiguous identifiability; (3) We use these new conditions on one side to design algorithmic heuristics to count defective nodes in a fine-grained way, on the other side to prove the first complexity hardness results on the problem of identifying defective nodes in networks via BNT. (4) We introduce a random model where we study lower bounds on the number of unambiguously identifiable defective nodes and we use this model to estimate that number on real networks by a maximum likelihood estimate approach


翻译:在现实环境中,发现有缺陷的物品是许多应用在现实生活中遇到的主要问题。我们认为,通过基于布林网络断层仪学(BNT)的方法,将网络中的有缺陷的节点确定为本地的问题,这种方法的基础是从端到端测量路径布林结果中推断出的信息。 {em 识别} 在一系列路径上,确保发现或明确计算出有缺陷的节点的条件当然非常相关。 我们从理论和应用的角度来调查旧的和引入新的可识别性条件,从而促成这一问题。 (1) 节点的数目和路径的数目之间究竟有什么精确的权衡,以至于在大多数节点上都能明确辨明? 答案仅以美元=1美元为基础,我们回答任何美元的问题,从而在以往的工作中隐含一个问题。 (2) 我们研究可明确识别的节点的数量,引入新的可建模性条件,严格地暗示和严格地隐含在明确的可识别性; (1) 我们用这些新条件来设计一个侧面的节点的节点和路径之间的精确权衡,即我们无法精确地计算出精度的精度。

0
下载
关闭预览

相关内容

图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Threshold-based Network Structural Dynamics
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月6日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关VIP内容
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员