We are assisting at a growing interest in the development of learning architectures with application to digital communication systems. Herein, we consider the detection/decoding problem. We aim at developing an optimal neural architecture for such a task. The definition of the optimal criterion is a fundamental step. We propose to use the mutual information (MI) of the channel input-output signal pair. The computation of the MI is a formidable task, and for the majority of communication channels it is unknown. Therefore, the MI has to be learned. For such an objective, we propose a novel neural MI estimator based on a discriminative formulation. This leads to the derivation of the mutual information neural decoder (MIND). The developed neural architecture is capable not only to solve the decoding problem in unknown channels, but also to return an estimate of the average MI achieved with the coding scheme, as well as the decoding error probability. Several numerical results are reported and compared with maximum a-posteriori (MAP) and maximum likelihood (MaxL) decoding strategies.
翻译:我们正以越来越多的兴趣协助开发应用数字通信系统的学习架构。 我们在这里考虑探测/ 解码问题。 我们的目标是为这一任务开发一个最佳神经架构。 最佳标准的定义是一个根本性的步骤。 我们提议使用频道输入-输出信号对配的相互信息(MI) 。 计算MI是一项艰巨的任务, 对大多数通信渠道来说,这是未知的。 因此, MI必须学习。 为了实现这一目标, 我们提议了一个基于歧视的配方的新颖神经感测仪。 这导致产生相互的信息神经解码器( MIND ) 。 开发的神经架构不仅能够解决未知渠道的解码问题, 而且还可以返回在编码计划下得出的平均MI的估计数, 以及解码错误的概率。 报告了若干数字结果, 并与最大一个状态(MAP)和最大可能性(MAxL)解码策略进行比较。