We give an algorithm for solving unique games (UG) instances whenever low-degree sum-of-squares proofs certify good bounds on the small-set-expansion of the underlying constraint graph via a hypercontractive inequality. Our algorithm is in fact more versatile, and succeeds even when the constraint graph is not a small-set expander as long as the structure of non-expanding small sets is (informally speaking) "characterized" by a low-degree sum-of-squares proof. Our results are obtained by rounding \emph{low-entropy} solutions -- measured via a new global potential function -- to sum-of-squares (SoS) semidefinite programs. This technique adds to the (currently short) list of general tools for analyzing SoS relaxations for \emph{worst-case} optimization problems. As corollaries, we obtain the first polynomial-time algorithms for solving any UG instance where the constraint graph is either the \emph{noisy hypercube}, the \emph{short code} or the \emph{Johnson} graph. The prior best algorithm for such instances was the eigenvalue enumeration algorithm of Arora, Barak, and Steurer (2010) which requires quasi-polynomial time for the noisy hypercube and nearly-exponential time for the short code and Johnson graphs. All of our results achieve an approximation of $1-\epsilon$ vs $\delta$ for UG instances, where $\epsilon>0$ and $\delta > 0$ depend on the expansion parameters of the graph but are independent of the alphabet size.


翻译:当低度总和(UG) 校验证明通过超分性不平等对下限限制图形进行小设置扩展时,我们提供一种解决独特游戏(UG) 的算法。我们的算法实际上更具有多功能性,即使约束图不是小设置扩展器,只要非扩展小组的结构是(非正式地说)“通过低度总和证明“字符化 ” 。我们的结果是通过四舍五入 0-entropy} 解决方案 — 通过新的全球潜在功能测量 — — 将底限图的缩放缩成 缩放(S) 半确定性程序。这种技术增加了(目前很短的)用于分析 SoS 松动小组结构的缩放量,只要非扩展小组的结构是(非正式地说) “ 非正式地说 ” 由低度总和平方平面总和时间算来解决任何 UG 的缩略图的缩略图。 硬度图的缩略图要么是 emph{noíal_ 超值 平面的缩数, 和前数的算法则需要前数。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月25日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员