We consider the classical problem of prediction with expert advice. In the fixed-time setting, where the time horizon is known in advance, algorithms that achieve the optimal regret are known when there are two, three, or four experts or when the number of experts is large. Much less is known about the problem in the anytime setting, where the time horizon is not known in advance. No minimax optimal algorithm was previously known in the anytime setting, regardless of the number of experts. Even for the case of two experts, Luo and Schapire have left open the problem of determining the optimal algorithm. We design the first minimax optimal algorithm for minimizing regret in the anytime setting. We consider the case of two experts, and prove that the optimal regret is $\gamma \sqrt{t} / 2$ at all time steps $t$, where $\gamma$ is a natural constant that arose 35 years ago in studying fundamental properties of Brownian motion. The algorithm is designed by considering a continuous analogue of the regret problem, which is solved using ideas from stochastic calculus.


翻译:我们从专家咨询的角度来考虑典型的预测问题。 在固定时间的环境下,时间范围是预先知道的,当有2、3或4名专家或专家人数众多时,就会知道实现最佳遗憾的算法。在时间跨度不为人知、时间跨度不为人知的时段里,对问题知之甚少。无论专家人数多多,在时间跨度上,以前从未知道任何微型最大最佳算法。即使有两位专家,Luo和Schapire,也留下了确定最佳算法的问题。我们设计了第一个在时间跨度上最大限度地减少遗憾的微小算法。我们考虑了2名专家的情况,并证明最好的遗憾是$\gamma\ sqrt{t} / 2$tt, 美元是35年前在研究布朗运动的基本特性时产生的自然常数。算法的设计是考虑一个连续的遗憾问题的类比,这个问题是利用从微量的计算中解决的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
85+阅读 · 2020年8月22日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月15日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
85+阅读 · 2020年8月22日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员